Mark Lynas interview with Chinadialogue on Fukushima

This is an interview between Chinadialogue’s Olivia Boyd and Mark Lynas, published on 29 March 2011. It is reproduced here as a cross-post: the original is here.

Olivia Boyd: The Fukushima crisis in Japan has reignited a debate over the merits of nuclear power. Is it a useful conversation?

Mark Lynas: Oddly enough, one of the effects of debating for and against nuclear power is to sideline the climate-change deniers, because it’s an accepted truth by both sides that global warming is real and urgently needs to be dealt with. That’s one possible good side to this whole thing.

With regard to the pros and cons of nuclear itself, again it may be good to get the debate properly out into the open, particularly about the safety aspects, because that’s what most preoccupies the general public. Explosions, repeats of Chernobyl, radiation, dangers of cancer – that kind of thing is central to the public perception of nuclear. So what’s happening at Fukushima I think will ironically illustrate how many of the public fears about radioactivity are vastly overblown.

OB: That doesn’t seem to have been the reaction to previous nuclear accidents though.

ML: Well, it’s difficult to say that. Take Three Mile Island for example, it’s mentioned a lot in the discussion and pretty much everyone has to admit that nobody was hurt, still less was anyone killed as a result. So, scary as it might have been at the time, it really was a very minor industrial accident, especially when set against the dangers of pretty much any other large-scale source of energy.

Again, Chernobyl of course represents a real world example of pretty much the worst case scenario of a nuclear disaster. And, again, there’s been a long-term collaborative scientific effort to study the impacts of that and they’re much, much less than originally feared. In fact, I think the most scientifically valid conclusion has been that the fear of radiation has been much more damaging than the radiation itself to the population.

OB: Radiation fears in China have prompted panic in recent weeks, for example stock-piling of salt. At the same time, the government has announced suspension of approvals of new nuclear plants while it reviews safety rules. What’s your reaction?

ML: Well, the Chinese nuclear programme was the best news for global warming in a decade. Every nuclear plant is very likely to substitute directly for a coal plant, which isn’t necessarily the case in other countries. So the emissions reductions are enormous and, in decades to come, would be measured in the many billions of tonnes of carbon dioxide.

The reaction of the Chinese government, I’m certain, will have been a response to the public fears, which have been wildly disproportionate to any danger from Fukushima. But we have to deal with – and the Chinese government has to deal with – the public as it is, not as you would wish them to be. And it may well be, then, that the nuclear programme is set back or curtailed. I certainly hope not.

OB: Even taking into account all of China’s nuclear construction plans, we’re still only talking about something like 4% to 6% of energy supply by 2020. Is that really world-changing stuff?

ML: I think it is significant. In terms of single slices, or wedges of the problem, it’s a big one, because Chinese coal is probably the biggest single energy-source contributor to climate change.

It’s particularly significant given that what matters to the climate is cumulative emissions. So, when you’re assessing our chances of staying below two degrees Celsius, for example, [keeping warming below two degrees Celsius above pre-industrial temperatures is the climate-change goal recognised by the Copenhagen Accord] you have to look at emissions right out to 2050 and, by that time, China could be substantially nuclear-powered. And we’ll be looking at a world that’s much more electrified too, in terms of transport and probably heating as well, certainly for industrial economies. So the proportion of energy which is used and delivered in electricity will be going up and, hopefully, the proportion of electricity which is generated through low-carbon renewables and nuclear will be going up at the same time.

OB: You’re pretty dismissive of public fears about nuclear. But looking at the news – the tap-water problems in Tokyo, contamination of the food supply – is it not legitimate for people to feel concern?

ML: The problem with the stories about radiation is that people have no way of properly assessing risk. It remains a truism that the risk from air pollution is enormously greater than any statistically insignificant risk from radiation. But the media picks up on increased radioactivity because it can be measured extremely accurately. The publicly acceptable levels of things like radioactive iodine in tap water are set well, well below what is likely to be harmful to public health for good, precautionary reasons. But the fact that a minute quantity of the stuff is there doesn’t mean that it’s actually likely to be harmful to anyone.

Within the context of the natural disaster that has killed 10,000 or 15,000 people, I really think that we’re talking about the wrong thing here. The tsunami wave which washed over fertile fields as well as towns, will have carried enormous amounts of toxins and car batteries and petrol tanks, goodness knows what else. That’s a much, much greater contamination problem I would have thought than the tiny levels of radioactivity emitted from Fukushima.

OB: So why are people focusing on the nuclear aspect so intently?

ML: This is a 50-year cultural issue, the public excitement and concern about all things nuclear, and it’s completely contradictory – people happily accept large doses of radiation for medical purposes, but are extremely paranoid about minute doses received from nuclear-power stations. And I don’t think there’s much understanding either about the extent to which natural background radiation is ubiquitous in the environment and in our own bodies.

People don’t have any context for this discussion: radiation is scary, it causes cancer, pictures of people with hair falling out, mental images of atomic bombs – case closed. We know that people in general don’t assess risk rationally. You can tell this from all sorts of lifestyle behaviour patterns, but it is particularly the case for nuclear power.

OB: Nonetheless, are there lessons to be taken from Fukushima, in terms of planning policy for example? Should we stop building nuclear plants in earthquake zones?

ML: Any kind of infrastructure in extremely seismic areas has to be properly thought through – that goes for tall buildings, hydroelectric dams, which could breach and cause inland tsunamis, a whole host of other things. Nuclear-power stations are included of course.

But remember, it was the tsunami that did the damage here. And the plants were properly and automatically shut down during the earthquake, which after all was much stronger than they were designed for. And I think we should also be cautious about judging newer designs on the basis of 1960s technology. The same applies to aircraft: we don’t worry about travelling on a new Dreamliner because there was a plane crash in 1970.

OB: In your book Six Degrees, you paint a bleak vision of a world changed by runaway climate change. What about if we’re talking about nuclear plants in that kind of world? Is there increased risk?

ML: I don’t really think so. I mean, there’s a potential increased level of danger because of higher storm surges, and given most nuclear infrastructure is located on the coast for reasons of access to emergency cooling – as was needed at Fukushima. But I don’t think this is a very viable large-scale argument against nuclear power.

It’s an engineering challenge, and anyone looking at Fukushima will see that the real problem was that the single disaster of earthquake and tsunami overwhelmed the back-up system and the back-up, back-up system at the same time. And you need to design your back-up systems so that they’re independent of each other. Certainly, there are engineering lessons to be learned, but I don’t think they in any way undermine the need for increased nuclear power more generally.

OB: What about rising sea levels?

ML: If you’re talking about plants with lifetimes of 40, 50, 60 years at the most, I don’t think even rising sea levels are a significant concern. At the very most, we’ll see less than a metre by 2060 or so and any increased flooding from that would be containable.

And remember, this idea that the ground under a nuclear reactor is contaminated forever and needs to be isolated from the sea is another erroneous one. These plants can be properly decommissioned and radioactive materials moved offsite and levels of lingering contamination are then virtually un-measureable.

This is a fairly standard anti-nuclear talking point, but isn’t one which, even for someone writing about global warming, is particularly valid.

OB: Another talking point is the degree to which nuclear actually is a low-carbon source, when you take into account the full cycle including uranium-mining and plant construction.

ML: Nuclear is more low-carbon than solar photovoltaics and about equivalent with wind. And there have been umpteen studies concerning this, including from the IPCC [Intergovernmental Panel on Climate Change]. That talking point is again little more than an urban myth. Of course nuclear is low-carbon, simply by dint of the technology it’s using and the energy source it’s based on.

Every wind turbine is made of steel and placed on a concrete platform. It takes a lot of energy to make solar panels. There’s a lot of concrete and steel going into a nuclear reactor and a fair amount of mining effort, although fourth-generation nuclear [theoretical reactor designs currently being researched] would mean we could actually use a lot of the stuff that’s already out there in stockpiles. But nuclear fission is so concentrated as a source of energy – it delivers a million times more volumetrically than coal. It’s blindingly obvious that nuclear is going to be extremely low carbon and potentially made zero carbon in decades to come.

OB: You are a strong advocate of nuclear power now, but that wasn’t always the case. What made you change your mind and do you think it’s an argument you can win?

ML: I didn’t want to be a green arguing against any low-carbon technology. That struck me as irrational, potentially counter-productive. Writing a book about just how terrifying escalating global-warming impacts could be made me realise that, proportionally, nuclear power was utterly safe and something I was prepared to be very comfortable with. More recent work I’ve done suggests it’s more ecologically friendly in terms of land use and water use and other things that ultimately matter to the biosphere than many other power sources that greens do support.

Ultimately, it was a case of trying to reconcile my views and ideology with the scientific evidence and I realised that, if I was to apply the same standard for nuclear as I do for climate change, then I had to alter my position. Those in the green movement who haven’t done so, I see them as being just as anti-science as the climate-change sceptics are, in a different field. There isn’t the evidence out there to support their viewpoint, so their viewpoint needs to change.

Mark Lynas will be participating in the IQ2 emergency debate ‘It’s got to be nuclear‘ on 14 April 2011 at the Royal Geographical Society in London at 6pm.

Post a comment